CONTRA COSTA COUNTY **Applicant and Site Information** 2.1 Rated (continuous) AC output power: _____ Watts ## Solar PV Standard Plan Simplified Microinverter and AC Module Systems for One- and Two-Family Dwellings #### PROVIDE THIS DOCUMENT TO FIELD INSPECTOR ALONG WITH ALL SYSTEM INSTALLATION INSTRUCTIONS. **SCOPE:** Use this plan ONLY for systems using utility-interactive Microinverters or AC Modules (ACM) not exceeding a combined system AC inverter output rating of 10 kW, with a maximum of 3 branch circuits, one PV module per inverter and with PV module ISC maximum of 10-A DC, installed on a roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to a single-phase AC service panel of 120/240 Vac with service panel bus bar rating of 400 A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers or trackers. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other articles of the California Electrical Code (CEC) shall apply as specified in section 690.3. MANUFACTURER'S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverters, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC110.3). Equipment intended for use with PV system shall be identified and listed for the application CEC 690.4(D). ## Job Address: ______ Permit #: ______ Contractor /Engineer Name: _____ License # and Class: _____ Signature: Date: Phone Number: 1. General Requirements and System Information Microinverter AC Module (ACM) Number of PV modules installed: _____ Number of ACMs installed: _____ Number of Microinverters installed: _____ Note: Listed Alternating-Current Module (ACM) is defined in CEC 690.2 and installed per CEC 690.6 1.1 Number of Branch Circuits, 1, 2 or 3: _____ 1.2 Actual number of Microinverters or ACMs per branch circuit: 1 ______ 2. ____ 3. ____ 1.3 Total AC system power rating = (Total Number of Microinverters or ACMs) * (AC inverter power output) 1.4 Lowest expected ambient temperature for this plan in Table 1: For -1 to -5°C use 1.12 or for -6 to -10°C use 1.14 correction factors. 1.5 Average ambient high temperature for this plan: = +47°C Note: For lower expected ambient or higher average ambient high temperatures, use Comprehensive Standard Plan. 2. Microinverter or ACM Information and Ratings Microinverters with ungrounded DC inputs shall be installed in accordance with CEC 690.35. Microinverter or ACM Manufacturer: Model: | 2.2 Nominal AC voltage rating: Volts | | |--|----------------------------| | 2.3 Rated (continuous) AC output current: Amps | | | If installing ACMs, skip [STEPS 2.4] | | | 2.4 Maximum DC input voltage rating: Volts (limited to 79 V, otherwise u | se the Comprehensive | | Standard Plan) | | | 2.5 Maximum AC output overcurrent protection device (OCPD) Amps | | | 2.6 Maximum number of Microinverters or ACMs per branch circuit: | | | 3. PV Module Information | | | (If installing ACMs, skip to [STEP 4]) | | | PV Module Manufacturer: | | | Model: | | | Module DC output power under standard test conditions (STC) = Watts | | | 3.1 Module Vocat STC (from module nameplate): Volts 3.2 Module Iscat STC (from module nameplate): Amps | | | 3.3 Adjusted PV Module DC voltage at minimum temperature = [Table 1] | _ [cannot exceed Step 2.4] | | Table 1. Module V₀c at STC Based on Inverter Maximum DC Input Voltage Derived | | | A4: A4 BCL | | | Table 1. Module Vo | cat ST | C Base | ed on I | nverte | er Max | imum | DC In | put Vo | oltage | Derive | d fror | n CEC | 690.7 | | | | |--|--------|--------|---------|--------|--------|------|-------|--------|--------|--------|--------|-------|-------|------|------|------| | Microinverter Max. DC Input
[STEP 2.4] (Volts) | | 37 | 40 | 43 | 46 | 49 | 52 | 55 | 58 | 61 | 64 | 67 | 70 | 73 | 76 | 79 | | Max. Module VOC @ STC, 1.12
(-1 to -5°C) Correction Factor (Volts) | 30.4 | 33.0 | 35.7 | 38.4 | 41.1 | 43.8 | 46.4 | 49.1 | 51.8 | 54.5 | 57.1 | 59.8 | 62.5 | 65.2 | 67.9 | 70.5 | | Max. Module VOC @ STC, 1.14
(-6 to -10°C) Correction Factor (Volts) | 29.8 | 32.5 | 35.1 | 37.7 | 40.4 | 43.0 | 45.6 | 48.2 | 50.9 | 53.5 | 56.1 | 58.8 | 61.4 | 64.0 | 66.7 | 69.3 | ### 4. Branch Circuit Output Information Fill in [Table 3] to describe the branch circuit inverter output conductor and OCPD size. Use [Table 2] for determining the OCPD and Minimum Conductor size. | | Table 2. Branch | Circuit OCPD and Minimum | Conductor Size* | | |------------------------|-----------------------|--------------------------|---------------------------------|--| | Circuit Current (Amps) | Circuit Power (Watts) | OCPD (Amps) | Minimum Conductor
Size (AWG) | Minimum Metal Conduit Size for 6 Current Carrying Conductors | | 12 | 2880 | 15 | 12 | 3/4" | | 16 | 3840 | 20 | 10 | 3/4" | | 20 | 4800 | 25 | 8 | 1" | | 24 | 5760 | 30 | 8 | 1" | ^{*}CEC 690.8 and 210.19 (A)(1) Factored in Table 2, Conductors are copper, insulation must be 90°C wet-rated. Table 2 values are based on maximum ambient temperature of 69°C, which includes 22°C adder, exposed to direct sunlight, mounted > 0.5 inches above rooftop, ≤ 6 current carrying conductors (3 circuits) in a circular raceway. Otherwise use Comprehensive Standard Plan. | Table 3. F | PV Array Configuration Sum | mary | | |---|----------------------------|----------|----------| | | Branch 1 | Branch 2 | Branch 3 | | Number of Microinverters or ACMs [STEP 1] | | | | | Selected Conductor Size [Error! Reference source not found.] (AWG) | | | |--|--|--| | Selected Branch and Inverter Output OCPD [Error! | | | | Reference source not found.] | | | #### 5. Solar Load Center (if used) | 5.1 | 1 Solar Load Center is to have a bus bar rating not less than 100 Am | ps. Otherwise use Comprehensive | |-----|--|---------------------------------| | | Standard Plan. | | | 5.2 Circuit Power see [STEP 1] = Wat | see [STEP 1] = Watts | |--------------------------------------|----------------------| |--------------------------------------|----------------------| ^{5.3} Circuit Current = (Circuit Power) / (AC voltage) = _____ Amps | | Table 4 Solar Load Contr | or and Total Invertor Outn | ut OCPD and Conductor Size | ** | |---------------------------|--------------------------|----------------------------|------------------------------|----------------------------| | Circuit Current
(Amps) | Circuit Power (Watts) | OCPD (Amps) | Minimum Conductor Size (AWG) | Minimum Metal Conduit Size | | 24 | 5760 | 30 | 10 | 1/2" | | 28 | 6720 | 35 | 8 | 3/4" | | 32 | 7680 | 40 | 8 | 3/4" | | 36 | 8640 | 45 | 8 | 3/4" | | 40 | 9600 | 50 | 8 | 3/4" | | 41.6 | ≤ 10000 | 60 | 6 | 3/4" | ^{**}CEC 690.8 and 210.19 (A)(1) Factored in Table 4, Conductors are copper, insulation must be 90°C wet-rated. Table 4 values are based on maximum ambient temperature of 47°C (no rooftop temperature adder in this calculation), ≤ 3 current carrying conductors in a circular raceway. Otherwise use Comprehensive Standard Plan. ### 6. Point of Connection to Utility: - 6.1 Load Side Connection only! Otherwise use the Comprehensive Standard Plan. - 6.2 Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? - ☐ Yes ☐ No (If No, then use 100% row in Table 5) - 6.3 Per 705.12(D)(2): (Combined inverter output OCPD size + Main OCPD size) ≤ [bus bar size × (100% or 120%)] | Table 5. Maximum Combined Inve | erter Ou | ıtput Ci | rcuit O(| CPD | | | | | | |---|----------|----------|----------|-----|-----|-----|-----|-----|-----| | Bus bar Size (Amps) | 100 | 125 | 125 | 200 | 200 | 200 | 225 | 225 | 225 | | Main OCPD (Amps) | 100 | 100 | 125 | 150 | 175 | 200 | 175 | 200 | 225 | | Maximum Combined Inverter OCPD with 120% of bus bar rating (Amps) | 20 | 50 | 25 | 60† | 60† | 40 | 60† | 60† | 45 | | Maximum Combined Inverter OCPD with 100% of bus bar rating (Amps) | 0 | 25 | 0 | 50 | 25 | 0 | 50 | 25 | 0 | [†]This plan limits the maximum system size to less than 10 kW, therefore the OCPD size is limited to 60 A. Reduction of Main Breaker is not permitted with this plan. ### 7. Grounding and Bonding Check one of the boxes for whether system is grounded or ungrounded: Grounded Ungrounded For Microinverters with a grounded DC input, systems must follow the requirements of GEC (CEC 690.47) and EGC (CEC 690.43). For ACM systems and Microinverters with ungrounded a DC input follow the EGC requirements of (CEC 690.43). #### 8. Markings Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum. # Solar PV Standard Plan — Simplified Microinverter Systems for One- and Two-Family Dwellings 9. Single-Inverter Line Diagram | SOLAR PV STANDARD PLAN - SIMPLIFIED Microinverter and ACM Systems for One- and Two-Family Dwellings ROOF LAYOUT PLAN | Building footprint and property lines, all service, approximate locations of electri any other structures on the property | panels, modules, clear access pathways, location of main cal disconnecting means, roof access points and locations of | |---|---|---| Property Owner: Property Address: | Contractor: Contractor Phone: | Contractor License Number:
Contractor Class: | Items required to be shown: | Property Owner: Property Address: Contractor Contractor | | |---|--| of boiles per sold. If I panel | | STRUCTURAL VIEWS | 4. Details showing that solar PV panels are flush mounted 10" or less 5. Attachment details showing type, diameter and length of embedment of bolts and spacing; number of bolts per solar PV panel | | Microinverter and ACM Systems for One- and Two-Family Dwellings | Size, spacing, span and direction for existing rafters, ceiling joists and framing support members Show location of load bearing walls on framing cross section | | SOLAR PV STANDARD PLAN - SIMPLIFIED | |